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Abstract— Tuning Model Predictive Control (MPC) cost
weights for multiple, competing objectives is labor-intensive.
Derivative-free automated methods, such as Bayesian Optimiza-
tion, reduce manual effort but remain slow, while Differentiable
MPC (Diff-MPC) exploits solver sensitivities for faster gradient-
based tuning. However, existing Diff-MPC approaches learn a
single global weight set, which may be suboptimal as operating
conditions change. Conversely, black-box Reinforcement Learn-
ing Weights-Varying MPC (RL-WMPC) requires long training
times and a lot of data. In this work, we introduce gradient-
based policy learning for Differentiable Weights-Varying MPC
(Diff-WMPC). By backpropagating solver-in-the-loop sensitivi-
ties through a lightweight policy that maps look-ahead obser-
vations to MPC weights, our Diff-WMPC yields rapid, sample-
efficient adaptation at runtime. Extensive simulation on a full-
scale racecar model demonstrates that Diff-WMPC outperforms
state-of-the-art static-weight baselines and is competitive with
weights-varying algorithms, while reducing training time from
over an hour to under two minutes relative to RL-WMPC.
The learned policy transfers zero-shot to unseen conditions
and, with quick online fine-tuning, reaches environment-specific
performance. Project Website: https://diffmpc.com

Index Terms— Model Predictive Control (MPC), Differen-
tiable MPC, Weights-Varying MPC, Learning-based MPC,
Differentiable Algorithms

I. INTRODUCTION

Model Predictive Control (MPC) [1], [2] is a fundamental
strategy for trajectory planning and control of complex
robotic systems, optimizing a system’s behavior over a future
prediction horizon [3]. However, the closed-loop MPC per-
formance critically depends on its problem parametrization,
including the cost function weights [4], [5]. Manual weight
tuning requires significant effort and expert knowledge.
Existing automated weight-learning methods fall into two
main families: derivative-free and differentiable gradient-
based approaches. The former include Bayesian Optimization
(BO) and Reinforcement Learning (RL), and were used to
learn static and locally variable weights [6], [7]. However,
they are typically limited by sample inefficiency [8], which
hinders their use for rapid online adaptation. Conversely,
recent advances in Differentiable MPC (Diff-MPC) have
shown quicker gradient-based weights learning. However, the
existing Diff-MPC examples [9], [10] learn a static set of
weights, with no adaptation to local operating conditions,
and address only linear or unconstrained nonlinear MPC.

As shown in Figure 1, we bridge this gap by in-
troducing gradient-based policy learning to enable quick,
sample-efficient online learning of cost weights within a
constrained, nonlinear Differentiable Weights-Varying MPC
(Diff-WMPC). By learning a policy that maps future ob-
servations to variable weight configurations, our approach

Fig. 1: Adaptive, context-aware, and sample-efficient cost
weights optimization: A look-ahead neural policy network
dynamically adapts and learns MPC cost weights online by
backpropagating task-level performance gradients through a
differentiable nonlinear MPC problem.

allows the MPC to autonomously adapt its behavior to maxi-
mize task-level performance, even with zero-shot deployment
in previously unseen scenarios.

A. Related Work and Contributions

Different approaches have been proposed for MPC param-
eter learning. Our review focuses on derivative-free methods
and on the emerging field of Diff-MPC.

Derivative-free methods treat the MPC problem as a
black-box, and iteratively search for the best MPC parame-
ters based on the observed performance. The authors of [11]
performed particle swarm-based tuning of MPC parameters.
In [6], BO was employed to adapt the MPC cost function
and prediction model in different environmental conditions,
while [12] used Multi-Objective BO (MOBO) to decrease the
MPC model mismatch. Song et al. [13] proposed a policy-
search to learn the MPC decision variables and parameters,
for agile drone flight. In [4], constrained auto-tuning of
MPC parameters was performed with Gaussian Process (GP)
methods. The authors of [14] adapted the MPC constraints
and dynamics by closed-loop iterative learning, in the context
of autonomous racing [15]. RL was employed by [16], [17],
[7] to learn static and locally variable cost function weights,
and by [18], [19] to tune the MPC prediction horizon and
meta-parameters. In [8], safe RL was conceived for weights-
varying MPC, by constraining the RL actions (MPC weights)
in a Pareto-optimal set obtained with MOBO.

However, the aforementioned derivative-free methods are
typically data-hungry, requiring many interactions with the



environment and limiting their applicability for online train-
ing with real-world systems. To improve sample efficiency,
recent works have explored Differentiable MPC, which lever-
ages gradient-based learning of MPC parameters. In [9],
analytical gradients of an MPC solution were exploited to
learn the cost function and prediction model, while [20]
devised an RL agent to learn the weights of a Diff-MPC
for quadrotor control. However, [9], [20] used a linear MPC,
with simple box control constraints and no state constraints.
Recently, Frey et al. [21] showed how to compute the
gradients of Nonlinear Model Predictive Control (NMPC)
problems with respect to their parameters, by differenti-
ating through the Karush-Kuhn-Tucker (KKT) optimality
conditions with the ACADOS toolbox [22]. The authors of
[23] proposed a software package building on ACADOS
to compute policy gradients for RL agents, and showed an
example of Q-learning of linear diff-MPC parameters. The
only example of a Differentiable NMPC is [10], which solved
a trajectory tracking problem with a nonlinear quadrotor
model. However, their NMPC problem had no constraints,
very few discretization points, and did not show local/ global
online adaptation to new scenarios or dynamical models.

Critical Summary: To the best of our knowledge, the
existing literature is limited by at least the following aspects:

• Derivative-free methods for weights-varying NMPC re-
quire extensive data and training time, limiting their
practicality for online adaptation.

• Gradient-based weight learning with Differentiable
MPC has been restricted to linear or unconstrained
settings, and only for static weight sets.

• Prior differentiable MPC approaches have not demon-
strated rapid online adaptation to previously unseen
conditions or model mismatches.

To address these limitations, our main contributions are:
• We present the first Diff-WMPC framework for nonlin-

ear systems with state and input constraints, enabling
fast, context-dependent adaptation of MPC cost weights
via a neural policy trained with solver gradients.

• We benchmark against Bayesian Optimization and
weights-varying Reinforcement Learning-based MPC,
achieving competitive or superior closed-loop perfor-
mance with over an order-of-magnitude reduction in
training time and sample usage.

• We demonstrate zero-shot transfer and rapid online
adaptation in autonomous racing: a policy trained on
one track and model is fine-tuned on a new, unseen
track with higher-fidelity dynamics in two laps.

II. METHODOLOGY

Notation: We define a vector as z = [z0, z1, ..., zn]
T ∈ Rn,

containing n variables z ∈ R. Z = [z0, z1, ..., zm] ∈ Rn×m
defines a matrix composed of m concatenated vectors z.

A. Nonlinear Model Predictive Control (NMPC) Problem

We formulate the general NMPC problem as a discrete-
time finite-horizon Optimal Control Problem (OCP), with

the state vector x ∈ Rnx , initial state xinit, control vec-
tor u ∈ Rnu , stage cost function l(·), terminal cost func-
tion m(·), prediction horizon N , system dynamics f(·), and
nonlinear inequality and terminal constraints h(·) and he(·):

min
x,u

∫ Tp

t=0

l
(
x(t),u(t);θ

)
dt + m

(
x(Tp);θ

)
subject to x(0) = x0,

ẋ(t) = f
(
x(t),u(t)

)
, t ∈ [0, Tp),

h
(
x(t),u(t)

)
≤ h̄, t ∈ [0, Tp),

he
(
x(Tp)

)
≤ h̄

e

(1)

The MPC solution is Z∗ = [X∗,U∗], with X∗ and U∗

being the computed states and controls for each timestep in
the prediction horizon. At each time step, the first control
action u∗

0 is applied to the system, and the MPC is solved
again from the new initial state.

B. Differentiating the NMPC Solution

In this work, we apply the recent theoretical advances in
Differentiable Nonlinear MPC to compute the sensitivities of
MPC solutions with respect to their cost function weights θ.
We base our formulation on Frey et al. [21], using the
ACADOS MPC toolbox [22]. The sensitivity calculation is
the first step towards gradient-based weights learning with
performance-related loss functions.

For a nonlinear constrained OCP, the solution set Z∗ must
satisfy the KKT optimality conditions [24], given by a non-
linear system of equalities and inequalities. Following [21],
the sensitivities S of an OCP solution with respect to its
weights can be obtained by applying the Implicit Function
Theorem (IFT) to the KKT system, yielding:

S =
∂w∗

∂θ
=
∂(z,λ,µ, s)∗

∂θ
= −M−1

∗ J∗, (2)

where S ∈ Rnw×nθ , w = (z,λ,µ, s) ∈ Rnw collects
the states and controls (z), Lagrange multipliers (λ,µ),
slack variables (s), and w∗ indicates a KKT solution. The
sensitivity matrix S in (2) is the product of two Jacobians,
M∗ and J∗, which are derived from the solution of the KKT
conditions with an interior-point method [21].

The application of the IFT to derive (2) requires standard
regularity conditions at the solution, including the linear
independence constraint qualification, the second-order suf-
ficiency condition, and strict complementarity [21]. These
conditions ensure that the solution is locally unique and
stable with respect to changes in the MPC cost weights θ.

The sensitivity matrix S provides the relationship between
a change in the cost weights θ and the corresponding
change in all optimal primal-dual variables w∗, enabling the
gradient-based learning approach presented in the following
sections. Since the solution vector w∗ contains the primal
solution z∗, which in turn is composed of the optimal state
and control vectors, we can find the sensitivity of any specific
part of the solution in the matrix S.

Solving for the full sensitivity matrix in (2) is referred to
as the forward sensitivities method. An alternative approach



provided by ACADOS is to solve for the adjoint sensitivities,
which can be faster in learning tasks with a large number of
parameters. In Section IV-G, we explain our reasoning for
choosing the forward method.

C. Diff-MPC: Gradient-based Learning of the MPC Weights

We leverage the capability to extract the sensitivity of our
optimal solution with regard to the weight vector ∂z∗

∂θ from
Equation (2) in the following sections to optimize our MPC
cost weights via gradient descent.

This single gradient by itself does not define a learning
framework, as it does not evaluate if a change in a spe-
cific way is beneficial for the high-level task objective of
the MPC. To enable the intended learning capabilities, we
have to connect this local gradient with a measure of the
system performance, formulated as a loss function L. As
visualized in Figure 1, this function quantifies the closed-
loop performance of the MPC on the given task, such as
tracking a reference trajectory. By ensuring that the imple-
mentation of L is differentiable and depends on the optimal
solution z∗, the gradients of the loss function with regard
to the optimal solution can be extracted as ∂L

∂z∗ . We utilize
PyTorch to compute these gradients, although any framework
with automatic differentiation can be implemented. Using
the gradient chain rule and common intersection z∗, we
can combine the loss function gradient with the gradient
we extract via ACADOS (Equation (2)) to receive the full
end-to-end gradient connecting the high-level performance
objective and parameter vector via the following equation:

∂L
∂θ

=
∂L
∂z∗

∂z∗

∂θ
. (3)

This end-to-end gradient, combined with a gradient-based
optimizer, enables the direct optimization of a set of MPC
weights to minimize a loss function. We use the Adam
optimizer [25], although various other methods, such as
Standard Gradient Descent or RMSProp, are applicable.

Algorithm 1 presents our Diff-MPC learning framework.
The process iterates over the total number of simulation
steps Ntotal (line 3), representing the full training duration
(e.g., multiple laps). At each timestep k, the algorithm solves
the OCP with a set of cost weights θk to compute the
optimal solution z∗k and the sensitivity matrix Sk (line 5).
This solution is evaluated by a high-level loss function Lk
(line 6), and the end-to-end gradient with respect to the
weights, ∇θLk, is derived (lines 7 - 8). From here, we
configure the framework for two distinct learning strategies.

In the static-weights variant (Diff-MPC), we optimize a
single parameter vector: θk ≡ θ for all k (line 4). Here, we
set the batch size Nbatch to the length of one training episode
(e.g., one lap). Consequently, the algorithm accumulates
gradients (line 9) throughout the episode and applies a single
gradient-based update (line 11) only when the episode is
complete (line 10).

Algorithm 1 Differentiable (Weights-Varying) MPC

Require: Initial weight set θ0; Reference trajectory Γ;
Number of simulation steps Ntotal; Batch size Nbatch

1: Initialize θ ← θ0 / πθ ← θ0

2: xk ← GetInitialState(); ∇θLaccum ← 0
3: for k to (Ntotal − 1) do ▷ Iterate over all timesteps k

4: θk ←

{
θ // Static Weights
πθ(GetObservat(xk)) // Weights Varying

5: (z∗k,Sk)← SolveDiffMPC(xk,θk)
6: Lk ← ComputeLoss(z∗k,Γ)
7: ∇θLk ←WeightsGrad(Lk, z∗k,θk,Sk)

8: ∇θLk ←

{
∇θLk // Static Weights
PolicyGrad(πθ,∇θLk) // Varying

9: ∇θLaccum ← ∇θLaccum +∇θLk
10: if (k + 1) mod Nbatch = 0 then

▷ Optimize weights/ policy every Nbatch timesteps
11: θ / πθ ← Optimizer(θ,∇θLaccum)
12: ∇θLaccum ← 0
13: end if
14: xk+1 ← SimulateStep(xk,u∗

k)
15: end for
16: return θ / πθ

D. Diff-WMPC: Gradient-based Policy Learning for
Weights-Varying MPC

Utilizing a single set of MPC cost weights can limit the
control performance, as different situations a system encoun-
ters during its deployment pose different challenges. To ad-
dress these limitations, we extend Diff-MPC by incorporating
a weights-varying policy network πθ. Based on observations
from the environment, the algorithm dynamically adapts
good-performing cost weights θ (line 4). Figure 1 visualizes
our general methodology for this approach in a trajectory
tracking scenario for autonomous vehicles.

Algorithm 1 presents the approach in detail, initializing
the policy πθ in a manner that it outputs the initial MPC
weights vector θ0 for any input (line 1). We deploy a neural
network to correlate observations and cost weights, though
other options are possible. In each timestep k (line 3),
the algorithm generates an observation ok of the system’s
environment or state as input for the policy network. Based
on this data, the network calculates the corresponding set of
parameters θk = πθ(ok) (line 4), used in the subsequent
MPC solve step (line 5).

In comparison to the Diff-MPC, we additionally propagate
the end-to-end gradient through the policy network (line 8),
enabling the network to learn and improve its weight adap-
tation policy online. To avoid any momentary event having
a disproportionate impact on the training performance, we
accumulate the gradient over a user-specified number of
timesteps. After reaching the specified batch size Nbatch
(line 10), the optimizer performs a gradient update step for
the policy network (line 11). This mini-batching strategy
allows us to perform frequent policy updates during one



training episode. All gradients are reset to zero (line 12),
and the MPC continues operation using the improved policy
network πθ in the next timestep.

III. APPLICATION EXAMPLE: TRAJECTORY TRACKING
WITH AUTONOMOUS VEHICLES

To demonstrate the performance of our proposed method-
ology, we apply it to the domain of trajectory tracking
in autonomous vehicles. Among autonomous vehicles, au-
tonomous racing serves as a challenging application example,
where the MPC needs to operate close to the vehicle’s
handling limits, dealing with combined longitudinal and
lateral acceleration and nonlinear dynamics and constraints.
Our experiments utilize a high-fidelity simulation environ-
ment built around the Dallara AV-24 racecar used in the
Indy Autonomous Challenge competition [26]. Our vehicle
dynamics model used inside the MPC is parametrized on
telemetry data from the real car.

We adapt the NMPC Problem (1) for our application. The
objective of the controller is to follow a pre-computed, time-
optimal path and velocity reference trajectory, based on the
implementation of [27]. The NMPC state vector is defined
as x = [xpos, ypos, ψ, vlong, vlat, ψ̇, δf , a], where xpos and
ypos denote the global position, ψ the yaw angle, vlong and
vlat the longitudinal and lateral velocities, ψ̇ the yaw rate,
δf the front wheel steering angle, and a the longitudinal
acceleration. The control input vector is u = [j, ωf ], with j
representing longitudinal jerk and ωf the steering rate.

The prediction model f in (1) is a nonlinear single-
track vehicle model with Pacejka Magic Formulas for tire
forces based on [28] and extended to include lateral load
transfer effects and aerodynamic drag and lift. The cost
function is formulated as a nonlinear least-squares objec-
tive, with stage cost l(x,u) = 1

2∥y(x,u) − yref∥2 and
terminal cost m(x) = 1

2∥y
e(x) − yeref∥2. The weight

vectors q = [qn, qψ, qvlong
, qalat ] and r = [rj , rω] penalize

deviations in lateral position n, yaw angle, longitudinal
velocity, lateral acceleration alat, as well as control ef-
fort in jerk and steering rate, respectively. Reference vec-
tors yref = [nref , ψref , vlongref , alatref , 0, 0] and yeref =
[nref , ψref , vlongref , alatref ] specify desired trajectory and ter-
minal states, with alat = vlonψ̇. State and input constraints,
including nonlinear combined longitudinal-lateral accelera-
tion constraints, enforce the actuation limits and the track
bounds. These constraints are derived from real-world race-
car data [26] and based on the implementation in [28].

For our application, we connect the MPC to a high-level
differentiable loss designed to minimize path and reference
velocity deviations while imposing conditional penalties on
the control actions:

L = α∥n−nref∥2+β∥v−vref∥2+γPj(j)+δPω(ωf ), (4)

where n − nref is the lateral and v − vref is the velocity
deviation from the reference trajectory. We define a general
conditional penalty function for any variable x with threshold

xth and scaling parameter κ:

Px(x) =

{
x2, if |x| ≤ xth
exp (κ(|x| − xth))− 1, if |x| > xth

(5)

Specifically, we use Pj(j) with jth = 8 m
s3 , κj = 0.15, and

Pω(ωf ) with ωf,th = 0.25 rad
s , κω = 0.8. This formulation

applies a quadratic penalty within a safe region and transi-
tions to a steeper exponential penalty for excessive control
actions, promoting both smoothness and safety. The weights
α, β, γ, δ in (4) balance the contribution of each term. As all
components are differentiable, gradients with respect to the
MPC states and controls can be efficiently computed using
automatic differentiation frameworks such as PyTorch. This
enables end-to-end gradient computation via the chain rule
(see Section II-C), directly linking the desired loss L to the
static cost weights θ (Diff-MPC) or weights-varying policy
network πθ (Diff-WMPC) illustrated in Figure 2. As a result,
we can optimize the controller’s cost weights to maximize
task-level performance.

Fig. 2: Inside our simulation environment, the learning
framework propagates the end-to-end loss function gradient
through the MPC solver, to learn (and adapt) the MPC cost
weights via a neural network policy.

In the stationary setting (static cost weights), based on the
Diff-MPC formulation in Section II-C, we learn a single cost
weight vector θ for the entire track, accumulating gradients
over an episode (one lap) before each update.

In contrast, our adaptive Diff-WMPC approach (Section II-
D, Figure 2) employs a look-ahead policy network πθ that
dynamically generates cost weights θk at each timestep,
conditioned on the upcoming reference trajectory. This en-
ables context-aware adaptation, allowing the controller to
anticipate and respond to varying reference features such
as straights and corners. The policy network, presented in
Figure 3, receives five future velocity values vk and five
curvatures ck as input from the pre-computed reference
trajectory, with a look-ahead horizon of 2.55 s. It processes
these through two fully connected layers, L1 and L2, each
containing 128 neurons and utilizing a softplus activation
function. The output contains the six cost weights θk =
[qk, rk] for the MPC at each step. We backpropagate the
end-to-end gradient through both the MPC and the policy
network (Algorithm 1), enabling online local adaptation.

Remarks on Practical Stability and Feasibility: Locally
adapting the cost weights during optimization may introduce
additional dynamics into the NMPC problem. To mitigate
potential instability, we employ specific architectural safe-
guards. We use a Softplus activation at the output of our



Fig. 3: Our weights-varying policy network uses observa-
tions from the environment (in our case, a future reference
trajectory) to output the adapted MPC cost weights.

policy network to guarantee positive weights, thereby pre-
serving a convex cost function. To avoid large weight updates
that could destabilize the vehicle, we implement gradient
clipping within the range ±0.1, accumulate gradients over
a batch of 10 timesteps, and apply a conservative learning
rate of 2.9 × 10−5. If the MPC solver fails to converge,
a fallback mechanism reverts to the last feasible weights
set. Structurally, we strictly decouple weights learning from
the MPC constraints. A rigorous stability and recursive
feasibility analysis under cost-weight adaptation remains for
future work.

IV. SIMULATION RESULTS: DIFF-MPC & DIFF-WMPC
IN TRAJECTORY TRACKING

A. Experimental Setup

To ensure a fair comparison, all algorithms share the same
ACADOS-based MPC implementation in Python 3.9 and run
on an AMD Ryzen 7950X CPU. The MPC uses the SQP RTI
solution method with the HPIPM quadratic programming
solver, exact Hessian, and solves the KKT system to a tol-
erance of 10−6. Table I summarizes the key parameters and
initial cost weights. We select the learning rate, loss weights
α, β, γ, δ in (4), and batch size via Bayesian Optimization.

TABLE I: NMPC- and Learning Parameters

Parameter Value

Simulator Discretization Time 0.02 s
MPC Discretization Time 0.075 s
MPC Prediction Horizon 2.55 s
Sensitivity Shooting Node Index 1
Initial q Weights [2.5, 2.9, 2.0, 5.0]
Initial r Weights [4.3, 6.8]

α, β, γ, δ
2.5× 10−5, 2.25
2.5× 10−7, 9× 10−3

Diff-WMPC learning rate lr 2.9× 10−5

Diff-WMPC batch size B 10

We evaluate performance under both nominal and mis-
matched dynamics using two simulation models:

Simulator 1 (Simplified Dynamics): A nonlinear single-
track model with a simplified Magic-Formula lateral tire
law [28]. This is used both as MPC prediction model and as
a simulation model to be driven, in our nominal experiments.

Simulator 2 (Higher-Fidelity Dynamics): In our adapta-
tion experiments, we let our MPC control a more complex
single-track vehicle simulator, with Pacejka ’96 (MF96)
lateral forces and combined-slip scaling. It models per-wheel
slip angles and loads, captures load transfer via roll-center

geometry, includes velocity-dependent downforce and drag,
distributes traction/braking across axles, and couples longi-
tudinal–lateral forces. Simulator 2 provides a higher fidelity
under high-acceleration maneuvers, while Simulator 1 is
lighter and well-suited for efficient training.

B. Benchmark Algorithms

1) Human Expert manually parametrized MPC (HE-
MPC): This baseline approach reflects the traditional prac-
tice of manually tuning a single set of MPC cost weights by
an experienced human expert.

2) Multi-Objective Bayesian Optimization MPC (MOBO-
MPC): We use constrained Multi-Objective Bayesian Opti-
mization MPC (MOBO-MPC) as a benchmark to optimize
a single set of NMPC cost weights. Independent GPs model
each objective, a GP classifier with Dirichlet likelihood en-
forces feasibility, and sampling uses Expected Hypervolume
Improvement. In this work, we adopt the same framework
as [8] but modify the NMPC formulation and dynamics from
a passenger vehicle to a racecar at the limits, optimize a
single global weight vector for the full track, and expand
to four objectives: maximum lateral deviation error, RMS
speed error, standard deviation of steering rate, and standard
deviation of longitudinal jerk, while maintaining MPC-based
feasibility enforcement.

3) Deep Reinforcement Learning Weights-Varying MPC
(RL-WMPC): We adopt the RL-WMPC framework from
[16] as benchmark algorithms for online adaptation of NMPC
cost weights. In the RL-WMPC of [16], a continuous-action
Deep RL agent updates weights at predefined switching
intervals using rewards based on multiple control objectives,
observing buffered MPC signals such as lateral deviation,
velocity error, and jerk. In this work, we deploy this approach
using continuous actions, racecar dynamics at the handling
limits, and look-ahead trajectories. The RL-WMPC uses the
identical observation inputs as our Diff-WMPC.

C. Diff-WMPC: Learning Control Policies in under Two
Minutes

We benchmark and train all algorithms on the Monza
racetrack using a minimum-lap-time reference trajectory, ex-
ploiting the full combined tire friction envelope and reaching
peak velocities of ≈ 79 m

s .

TABLE II: Training time comparison: Our Diff-WMPC
achieves over an order-of-magnitude speedup in both wall-
clock time and sample usage compared to the RL-WMPC.

Algorithm Training Time [s] Samples
MOBO-MPC 1071 460,278
Diff-MPC (Ours) 235 88,996
RL-WMPC 3885 1,000,000
Diff-WMPC (Ours) 101 36,778

Table II reports wall-clock training time and the number
of forward simulation samples required to obtain the final
tuned cost weights/policies. Our gradient-based methods
yield substantial efficiency gains: (i) for static cost weights,
Diff-MPC reduces optimization time by 78.1% (4.6× faster)



Fig. 4: One lap on the Monza racetrack in Simulator 1, in a
setting with no model mismatch. Dashed lines separate static-
weights and weights-varying approaches. From scratch, our
Diff-WMPC converges within 6 training laps.

and uses 5.2× fewer samples than MOBO-MPC; (ii) for
weight-varying policies, Diff-WMPC trains 38.5× faster
than RL-WMPC (97.4% reduction) with 27.2× fewer
samples, converging in under two minutes, equivalent to 6
laps or 630 s of real driving. Thus, Diff-WMPC achieves
over an order-of-magnitude speedup in wall-clock time and
sample usage compared to the RL-WMPC algorithm.

Moreover, our Diff-MPC and Diff-WMPC attain closed-
loop performance that matches or surpasses state-of-the-art
baselines. Figure 4 compares the lateral and velocity tracking
errors of our differentiable methods with the benchmarks: (i)
static global weights optimization and (ii) weights-varying
approaches (separated by dashed lines). Here, experiments
are performed in a perfect-model setting (Simulator 1),
where the simulator dynamics match the MPC internal
prediction model. Our differentiable controllers consistently
outperform the manually tuned baseline, and are competitive
with or superior to the BO and RL-based counterparts. This
comparison of performance and training time indicates that
solver-in-the-loop gradient information significantly accel-
erates convergence without compromising control quality.
Additionally, these experiments clearly demonstrate the per-
formance improvements that weights-varying, particularly
differentiable weights-varying, approaches enable compared
to their static-weight counterparts.

D. Interpreting the Learned Weight Adaptation Policy

Figure 5 illustrates two representative MPC weights our
weight-varying policy dynamically adapts along one lap
in Monza. The velocity-error weight increases on straights
for accurate speed tracking, and decreases in corners to
accommodate lateral limits. Conversely, the steering-rate
weight relaxes on straights and tightens through turn-in and

Fig. 5: Proactive adaptation of MPC cost weights over
one Monza lap: Heatmaps of two representative weights
show how the look-ahead policy anticipates upcoming track
features and driving phases, smoothly adjusting cost weights
before straights, corners, braking, and acceleration phases.
The vehicle travels clockwise.

apex to suppress aggressive inputs and jerk. Our look-ahead
policy adjusts each weight before entering the main corners,
indicating anticipatory adaptation.

E. Training with Model Mismatch

In real-world applications, the internal prediction model of
the MPC inevitably deviates from the true system dynamics.
To test how the controllers generalize to such a mismatch,
we train them in a setting where the controller’s internal pre-
diction model (based on Simulator 1) is no longer identical
to the environment’s true dynamics (Simulator 2), forcing
the algorithms to cope with the discrepancy. Figure 6 shows
that both Diff-MPC and Diff-WMPC generalize reliably and
achieve competitive or better performance than the bench-

Fig. 6: Performance at Monza under a model mismatch,
where the controller’s internal prediction model (Simulator
1) differs from the high-fidelity Simulator 2 to be driven.
Our methods show robust behavior and remain competitive.



mark algorithms. The improvements of our weights-varying
policy over static cost weights are even more visible, as the
Diff-WMPC reduces the mean lateral deviation compared
to the best static weight method by 50% and the mean
velocity error by 37.5%.

F. Zero-Shot Generalization and Quick Adaptation to unseen
Conditions

We now deploy our Diff-WMPC policy trained on Monza
with Simulator 1 directly on the unseen Laguna Seca circuit
under the higher-fidelity Simulator 2 dynamics, inducing
simultaneous model mismatch and a new track layout. Figure
7 shows the results: with only two laps of online fine-
tuning (27 s in simulation and ≈178 s equivalent real-world
driving), our policy adapts to Laguna Seca and matches the
performance of a controller trained from scratch on this
environment, demonstrating fast, data-efficient transfer.
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Fig. 7: Zero-Shot to Rapid Adaptation: the learned Diff-
WMPC policy successfully transfers from Monza in Sim-
ulator 1 to the unseen Laguna Seca track in Simulator 2,
and adapts within 27 s (≈178 s real driving) to reach
environment-specific performance.

G. Sensitivity Analysis, Ablation Study, and Compute Time

a) Robustness to initialization: We first assess robust-
ness to the initialization of the MPC cost weights at Monza
under model mismatch. Across 30 random initializations (six
weights sampled uniformly in the range [0, 10]), pre-training
performance varies widely. Yet all runs converge to a near-
identical post-training solution (Table III), indicating low
sensitivity and strong robustness to the initialization choice.

TABLE III: Robustness to initialization: 30 random MPC
cost-weight sets all converge to a high-performance solution.

Parameter / Metric Value

Number of Samples 30
Initial MPC Weight Range 6× [0, 10]

Pre-Training RMSE Range (Lateral Deviation) [m] 0.152− 0.422
Post-Training RMSE Range (Lateral Deviation) [m] 0.090− 0.091

Pre-Training RMSE Range (Velocity Deviation) [m/s] 0.609− 1.561
Post-Training RMSE Range (Velocity Deviation) [m/s] 0.345− 0.369

Pre-Training Mean Accumulated Loss (per Lap) 886.8± 503.4
Post-Training Mean Accumulated Loss (per Lap) 90.1± 0.46

b) Choice of sensitivity node: Using Equation (2), we
compute the MPC sensitivities with respect to the first
shooting node of the prediction horizon. Training with
nodes n.1, 10, and 20 yields post-training lateral RMSEs
of 0.090m, 0.108m, and 0.191m, respectively (velocity
RMSEs 0.351 m

s , 0.504 m
s , and 0.766 m

s ). Hence, node 1
strikes the best balance between gradient informativeness .

c) Ablation study: The first two box-plots in Figure 8
remove either the future velocity vref or the future curva-
ture cref from our Diff-WMPC policy’s look-ahead context
(Figure 3), showing performance degradation and confirming
the relevance of both signals. Likewise, restricting learning
to only state or only control weights (third and fourth box-
plots) underperforms learning the full weight vector.
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Fig. 8: Ablation study: removing policy context (future
velocity vref or future curvature cref ) or restricting adaptation
to only state or control weights degrades performance.

d) Computational efficiency: We compare the mean
runtime during training and inference (Figure 9). Our com-
putational efficiency allows us to employ the forward sensi-
tivity method, providing the full sensitivity matrix for more
flexible analysis and experimentation. Online training with
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Fig. 9: A comparison of the mean computation times shows
the additional resources the online training with Diff-MPC
and Diff-WMPC requires. After training, we deactivate the
learning-related tasks, reducing the runtime significantly.



Diff-MPC/ Diff-WMPC adds overhead from learning-related
tasks. After training, these components are disabled and only
the MPC and a lightweight policy remain. At inference-time
Diff-WMPC achieves a very quick sub-1.4ms latency.

V. CONCLUSIONS

This work addresses the automatic optimization of cost
weights for high-performance nonlinear MPC under chang-
ing operating conditions. We present Differentiable Weights-
Varying MPC (Diff-WMPC), the first framework to combine
solver-in-the-loop gradient learning with dynamic, context-
dependent weight adaptation for systems with nonlinear
dynamics and constraints. Our approach builds systemati-
cally from static-weight Diff-MPC to adaptive Diff-WMPC,
leveraging a neural policy to adjust MPC cost weights online.

Extensive experiments in our autonomous racing simula-
tion environment show that our methods match or outperform
state-of-the-art benchmarks, including BO and RL-WMPC.
All while delivering a paradigm shift in efficiency, where
Diff-MPC reduces the training time by 78% compared to
MOBO-MPC, and Diff-WMPC achieves a 97.4% reduction
and requires 27 times fewer samples than RL-WMPC. We
furthermore demonstrate how our adaptive weights-varying
policy significantly improves trajectory tracking performance
over the best static-weight approach, reducing mean lateral
deviation by up to 50% and mean velocity error by 37.5%.

While our approach enables rapid and robust adapta-
tion, several limitations remain. Gradient-based optimization
may get stuck in local minima, and global optimality is
not guaranteed. Online weight adaptation in constrained
NMPC depends on differentiability assumptions, and active
set changes can introduce non-differentiable kinks, causing
noisy gradients and possible instability or infeasibility. Rapid
weight updates may also reduce stabilizing terms or push
trajectories toward constraint boundaries. We can mitigate
these risks by projecting weights into safe sets, using small
learning rates, regularizing updates, and monitoring solver
conditioning. Future work should address formal safety
guarantees , extend learning to other MPC components, and
demonstrate the methodology on a physical platform.
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